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Abstract 

Exact velocity profiles in thermal field-flow fractionation (FFF) were numerically computed for twelve solvents 
and forty different combinations of the temperature drop AT across the channel and of the cold wall temperature, 
T,. An expression with six coefficients relating the v parameter of a third-degree polynomial velocity profile which 
approximates the exact profile with AT and T, was derived for each solvent. Under typical experimental conditions, 
it provides a nearly two orders of magnitude improvement in the accuracy of the prediction of the retention over 
the equation based on the classical parabolic profile. A procedure is suggested for using this v vs. AT and T, 
expression for extracting the basic FFF parameter A from retention data. 

1. Introduction 

Field-flow fractionation (FFF) is a method of 
separation of macromolecular or particulate ma- 
terials which is performed in a thin, ribbon-like 
channel. A flow of carrier liquid transports the 
sample components along the channel at various 
rates depending on their degree of interaction 
with an external field applied perpendicular to 
the main axis of the channel [l]. The retention 
time of a sample component (which, in the 
following, will be called an analyte) depends on 
both its concentration distribution and the axial 
velocity distribution in the field direction. There- 
fore, in order to predict the retention of an 
analyte or to characterize an analyte from its 
FFF retention data, one needs to know these two 
distributions precisely. The concentration distri- 
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bution depends on the forces acting on the 
analyte and on its diffusivity. In fact, the shape 
of this distribution determines the operating 
retention mode [2]. 

Because the analytes generally have a small 
size, it can be correctly assumed in most cases, 
that they are transported along the channel by 
the flow with the axial flow velocity at the 
position of their centre of gravity. Knowing the 
axial velocity distribution of the analytes in the 
field direction then amounts to knowing the axial 
flow profile. Because the channel is essentially 
made of two long and wide parallel walls, the 
flow profile is frequently assumed to be 
parabolic, except for a small perturbation near 
the channel edges [3,4]. Such a velocity profile is 
obtained for the flow of an isothermal fluid 
between two infinite parallel plates. Indeed, if z 
is the direction of the flow, x the distance from 
one of the plates, w the distance between the 
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two plates, dPldz the pressure gradient driving 
the flow and 77 the fluid viscosity, the velocity 
profile, u(x), is then obtained from the simple 
form of the differential Navier-Stokes equation: 

d”v dP 
77’s== 

which gives, after integration: 

(1) 

where (u) is the mean flow velocity. There are, 
however, situations encountered in FFF where 
these two underlying assumptions (infinite paral- 
lel plates geometry and constant viscosity) are 
not fulfilled. Such is the case, for instance, in 
sedimentation FFF because of the curved geome- 
try of the channel, or in flow FFF because of a 
transverse flow component through at least one 
of the channel walls. Nevertheless, under typical 
operating conditions, the correction to be 
brought to the how profile is then negligibly 
small [2]. 

The situation is clearly different in thermal 
FFF in which the variations of the fluid viscosity 
resulting from the temperature gradient applied 
across the channel thickness are sufficiently large 

to induce significant distortion of the flow profile 
from the parabolic limit. This was recognized in 
earlier papers on thermal FFF. Myers et al. [5] 
solved Eq. 1 in which 77 is no longer a constant 
but is given as a function of x as 

77 = 7, exp(-pxiw) (3) 

where p = B ATIT:, 7, is the viscosity at tem- 
perature T, of the cold wall, AT is the tempera- 
ture difference between the two plates and B a 
solvent constant in the Andrade equation relat- 
ing the viscosity and the absolute temperature T: 

(4) 

Comparison of Eqs. 3 and 4 shows that the 
following relationship was implicitly assumed for 

the temperature profile across the channel thick- 
ness: 

T= Tc 

this equation may provide a satisfactory approxi- 
mation of the temperature profile near the cold 
wall but is not consistent with the fact that AT 
represents the temperature drop between the 
two plates. 

It was later pointed out that, when the viscosi- 
ty is not constant, the left-hand term of Eq. 1 is 
not correct, even when taking n as a function of 
x, but must also include a dvlidu term [6]. The 
flow profile was accordingly calculated using Eq. 
(4) and a linear relationship between T and x 
[7]. However. the calculation is complex and has 
to be made numerically for specific values of B, 
T, and AT. as some of the integrals involved 
have no analytical solution. 

Further, the temperature profile across the 
channel thickness is actually not linear because 
of the temperature dependence of the thermal 

conductivity of the liquid. Knowing this depen- 
dence, one can calculate the resulting tempera- 
ture profile [Xl. This further complicates the 
calculation of the velocity profile. A treatment 
was performed by Gunderson et al. [9] using the 
complete Navicr-Stokes equation, a third-de- 

gree polynomial expression of the fluidity, which 
is the reciprocal of the viscosity, as a function of 
the temperature and a third-degree polynomial 
dependence of the temperature vs. x/w, ob- 
tained as a Taylor series about the cold wall in 
terms of dK/dT, the coefficient of variation of 

the thermal conductivity K with temperature. By 
this means, they were able to obtain an ana- 
lytical solution of the velocity profile given as a 
fifth-degree polynomial expression in terms of 
the reduced coordinate X/W. Then the retention 
equation, for an exponential concentration pro- 
file, was obtained as a particular case of the 
general expression for a rz-degree polynomial 
velocity profile given previously [IO]. 

In spite of the fact that analytical expressions 
of the velocity profile and of the retention factor 
are obtained, this procedure is sometimes con- 
sidered complicated because various successive 
calculations must be performed to obtain the 
coefficients of the velocity profile expression 
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[ 111. In addition, the Taylor expansion of the 
temperature profile about the cold wall cannot 
rigorously provide the correct value of the tem- 
perature at the hot wall and is therefore not, in 
principle, rigorously consistent with the fact that 
the temperature drop between the two plates is 
equal to AT. Further, the computation of the 
dispersion coefficients for a fifth-degree polyno- 
mial velocity profile becomes very complex and 
has not yet been attempted, although general 
expressions for an n-degree polynomial velocity 
profile exist [lo]. 

For this reason, it has been suggested that one 
can approximate the true velocity profile by a 
third-degree polynomial profile in such a way 
that the slope of the relative velocity profile 
becomes equal to that of the true profile as one 
approaches the cold wall [10,12,13]. This method 
is justified by the fact that it has been observed 
that all investigated polymeric samples analysed 
so far using thermal FFF move in the vicinity of 
the cold wall where they form a thin cloud. This 
method has been applied in some instances for 
predicting or interpreting retention data [12-161. 
A third-degree polynomial velocity profile con- 
tains a single adjustable coefficient as the three 
other possible coefficients of a third-degree poly- 
nomial are fixed by the no-slip condition (which 
implies a zero velocity at each of the two walls) 
and the normalization condition (the mean value 
of the relative profile u / (u > across the thickness 
must be equal to 1). The main problem is 
selecting the appropriate third-degree coefficient 
for specific solvent and temperature conditions. 
This has mainly been done by graphical interpo- 
lation of calculations at various BIT, and AT/T, 
values [17]. The purpose of this work was to 
provide a method for calculating the third-degree 
coefficient for various solvents and temperature 
conditions, which can be easily used for practical 
application in both predicting and interpreting 
thermal FFF retention data. 

2. Theory 

The basic Navier-Stokes equation describing 
the flow velocity in the case of a non-constant 
viscosity is written as [6,18,19] 

(6) 

By double integration of this equation, the 
relative velocity profile, v/ (v ), is obtained as a 
function of the reduced transverse coordinate, 
XIW: 

x/w x/w 

- 
0 

1 x/w x/w 

0 0 0 

(7) 
where n depends on x/w through the tempera- 
ture T. The constant C in Eq. 7 is equal to 

I x/w - d(xlw) 
n 

c=o 1’ 

I d(xlw) 

77 
0 

(8) 

The relationship between the viscosity and the 
temperature used in this work is given by Eq. 
(4). This form of the Andrade equation is 
consistent with experimental data [20] and with 
approximate theories of the liquid state [21]. 
Considering Eq. 4 as an Arrhenius-type law, kB, 
where k is the Boltzmann constant, can be 
considered as an activation energy for viscous 
flow. 

The thermal FFF system is generally operated 
in such a way that a constant energy flux, q, is 
input to the channel by means of electrical 
resistances in the vicinity of the hot wall, while a 
flow of water evacuates the heat at the cold wall. 
The temperature profile across the channel thick- 
ness is then given by the Fourier law of heat 
conduction [22] : 

qc_K.g (9) 

where K is the thermal conductivity. Over the 
typical temperature ranges encountered in ther- 
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ma1 FFF experiments, the thermal conductivity 
changes slightly and linearly with temperature 
[23] so that one can write 

dK 
K = K, +-@- T,) (10) 

where K, is the thermal conductivity at the cold 
wall temperature and dK/dT is a constant 
specific for the carrier liquid. lntegration of Eq. 
9 in combination with Eq. 10 and elimination of 
4 by replacement in terms of AT, the tempera- 
ture drop between the two plates, gives the 
temperature profile across the channel thickness 

[91: 

1 
T=T~+ 1 dK 

-.- 
K, dT 

X l+$..$.AT 
L 

(11) 
Replacement of T in Eq. 4 by its expression in 
Eq. 11 provides the dependence of 77 as a 
function of x/w which is needed for evaluating 
the integrals which gives the velocity profile in 
Eq. 7 for given B, T,, T,, AT, K, and dKldT 
values. As B, q,, K, and dK/dT depend on the 
nature of the carrier liquid and on T,, the three 
independent parameters which determine the 
velocity profile are AT, T, and the nature of the 
carrier liquid. The relative velocity profiles were 
numerically calculated according to Eqs. 7, 4 and 
11 for various liquids, AT and T, values. They 
are referred to as “exact” velocity profiles, (vi 

(V&X. 
As discussed above, it is, interesting, from a 

practical point of view, to approximate the exact 
relative velocity profile by a third-degree polyno- 
mial profile, (u/(v)),, in terms of x/w. It has 
been found convenient to write this profile, 
which depends on the single adjustable coeffi- 
cient V, in such a way that one retrieves the 
parabolic profile when v = 0 [10,13]. This gives 

6[(1 + v,(G) - ( 1-t 3v)(;)* +2@i3] (12) 

In order to select v so that the slope of the exact 
relative velocity profile equals that of the third- 
degree profile near the cold wall, the procedure 
developed by Brimhall et al. [7] cannot be 
employed as it is specific for a linear temperature 
profile. We therefore use the following general 

approach. 
One can compare a given relative velocity 

profile with the ideal parabolic shape, (v/(v))~, 
given by Eq. 2 and obtained for AT = 0 or for a 
hypothetical liquid with B = 0, by means of the 
relative deviation, E, defined as 

(13) 

This relative deviation depends, of course, on 
x/w. In fact, a plot of 6 vs. x/w can be consid- 
ered as a modified representation of a velocity 

profile. Let E,, and cj be the E functions for the 
exact and third-degree polynomial velocity pro- 
files, respectively. The slope of the exact relative 
velocity profile is, according to Eq. 13, equal to 

W(uH,, d(u/(v)), 
d(xlw) = (l + ‘,x) d@iw) 

+ (u/(u)),& 

It is easily seen from Eq. 12 that the slope of the 
third-degree relative velocity profile at cold wall 
is equal to 6 (1 + 7)). In order to approximate the 
exact velocity profile by a third-degree polyno- 
mial velocity profile in such a way that the two 
profiles have the same slope at the cold wall, one 
therefore must have 

(15) 

Noting that, at the cold wall (x/w = 0), (ui 
(u)), = 0 and d(v/ (v)),/d(xlw) = 6 according 
to Eq. 2, the combination of Eqs. 14 and 15 
gives 

lim F,, = v 
xiw--to (16) 

One notes that, according to Eq. 12, E becomes 
undefined for vanishing x/w, so one has then to 
write I,, as a limit. The physical property of the 
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parameter v expressed by eqn. 16 provides an 
easy graphical representation of the v parameter: 
this is the limiting value of E,, for X/W = 0. This 
property is used in the following for the de- 
termination of V. 

Assuming that the concentration profile of a 
given solute is exponential and characterized by 
the basic FFF parameter, h, of that solute, its 
retention factor, R, is then obtained, when the 
velocity profile is represented by Eq. 12, in terms 
of h and v as [10,13] 

R=6h(vf(l-6*u)[coth(&)-2A]) (17) 

3. Basic solvent data and computational 
procedure 

The computation of the relative velocity pro- 
file for a given solvent at various T, and AT 
values requires that the values of the constants B 
and dK/dT of that solvent and the value of K at 
some reference temperature are known. The 
values of B for the various organic solvents were 
calculated as the slopes of the linear regressions 
of In 7 vs. l/T from experimental viscosity data 
at various temperatures [20,24]. The resulting B 
values for the various solvents investigated are 
reported in Table 1. 

Table 1 
Solvent properties used in the calculations 

When experimental thermal conductivity data 
for a given solvent were reported at different 
temperatures [23], dK/dT was calculated as the 
slope of a linear regression of K vs. T. In other 
cases, values of K were estimated .at various 
temperatures using the Latini et al. method 
recommended for organic solvents by Reid et al. 
[23], which gives 

A*T; (1 - T,)“.38 
u=** 

Crlf T116 (18) 

where T, is the reduced temperature T/ Tcrit, 
Tcrit the critical temperature, T,, the normal 
boiling temperature, M the solvent molecular 
mass and A*, a, p, y parameters which are 
tabulated for various classes of organic com- 
pounds [23]. Although this expression is not 
rigorously consistent with the hypothesis of the 
constancy of dK/dT, it is found that the variation 
of K with T in the typical temperature range 
used in FFF is nearly linear, which justifies the 
approximation expressed by Eq. 10. The values 
of K at 20°C and of dK/dT are reported in Table 
1. 

Once the viscosity profile, &r/w), across the 
channel thickness is known from the combina- 
tion of Eqs. 4 and 11 for a given solvent and 
fixed values of T, and AT, the integrals entering 
Eqs. 7 and 8 are numerically computed by means 

Solvent B 

(K) 

K at 293 K 
(Wm-‘K-r) 

dK/dT 
(Wm-‘Km’) 

Benzene 1315.79 
2-Butanone 975.90 
Carbon tetrachloride 1242.32 
Cyclohexane 1516.57 
Cyclohexanone 1791.90 
p-Dioxane 1311.17 
Ethyl acetate 1042.33 
Ethylbenzene 1095.78 
Tetrahydrofuran 923.21 
Toluene 1085.00 
o-Xylene 1183.00 
p-Xylene 1052.24 

0.148 
0.160” 
0.103 
0.124 
0.170” 
0.159” 
0.147 
0.132 
0.166” 
0.141” 
0.139” 
0.136” 

-3.53. 1o-4 
-2.80. 10-4” 
-1.87. 10-4” 
-2.48. 10m4a 
-2.86. 1O-4” 
-2.95. 10-4’ 
-1.50. 1o-4 
-2.33. 1O-4 
-3.51. 10-4” 
-2.59. 10-4” 
-2.11. 1o-4” 
-2.35. 1O-48 

a Values estimates by the Latini et al. method [23]. 
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of the Simpson integration procedure. The rela- 
tive velocity profile is determined for successive 
x/w values differing by 0.01 unit. Between two 
consecutive x/w values, the integrals are com- 
puted by dividing the 0.01 interval for x/w in as 
many sub-intervals as necessary to ensure that 
the results of the integration of two consecutive 
two fold division steps differ in relative value by 
less than lo-“. This integration procedure was 
tested with some usual functions for which the 
analytical solution of the finite integral is known. 
In all cases, the relative difference between the 
numerical and analytical integration results was 
less than 5. 10m7. 

Then, knowing the exact relative velocity 
profile, the relative deviation, F,,, from the 
parabolic profile is calculated and the v parame- 
ter is estimated according to the property ex- 
pressed by Eq. 16, by extrapolation to X/W = 0 of 
the E,, vs. x/w curve for small x/w values. In 
practice, v is obtained as the intercept of the 
linear regression of B,, vs. x/w in the xlw range 
from 0.01 to 0.1. 

4. Results and discussion 

The temperature profile given by Eq. 11 is 
represented in Fig. 1 together with two approxi- 
mate profiles previously used, the linear profile 
[7] and the profile given by Eq. 5 [5]. Clearly, 
this latter profile does not describe the true 
profile satisfactorily. The deviation of this true 
profile from linearity depends on AT, on the 
solvent used and, to a lesser extent, on T,. Since 
for all organic solvents investigated the thermal 
conductivity decreases with increasing tempera- 
ture, the shape of the temperature profile is 
similar to that shown in Fig. 1 and at any 
position across the channel the actual tempera- 
ture is lower than it would be if the profile was 
linear. 

The relative velocity profiles and the associ- 
ated v parameters were determined for the 
twelve organic solvents listed in Table 1, which 
have been or may be used in thermal FFF. For 
each solvent, 40 sets of calculations were per- 
formed for four T, values (T, = 10, 20, 30 and 

0.8 i 

0.6 0.8 1 

x/W 

Fig. 1. Temperature profiles in thermal FFF plotted as (T- 

T)/AT vs. X/W. From bottom to top curves: exact profile 

with temperature-dependent thermal conductivity; linear 

profile (temperature-independent thermal conductivity); pro- 
file given by Eq. 5. Solvent, ethylbenzene: AT= lOO”C;7“ = 

20°C. 

40°C) and ten AT values (AT = 10, 20, 30, 40, 
50, 60, 70. 80, 90 and lOwC>. 

For all solvents except two (cyclohexanone 
and o-xylene). the overall temperature range 
covered from the lowest cold wall temperature 
(1O’C) to the highest hot wall temperature 
(140°C) exceeds the liquid temperature range at 
atmospheric pressure. When performing the 
calculations it was implicitly assumed that the 
values of the solvent parameters R, K, and dK/ 
dT obtained or estimated at atmospheric pres- 
sure were also correct at the pressure necessary 
to maintain the carrier fluid in the liquid state at 
the hot wall temperature selected. In fact, it is 
relatively rare that thermal FFF experiments are 
performed in a pressurized channel. Exceptions 
concern the analysis of relatively low-molecular 
mass species for which a large AT is necessary to 
obtain the required selectivity [25], the analysis 
of polymers, such as polyethylenes, for which a 
high T, is needed to satisfy the solubility require- 
ment [26] or, still, the case of solvents with low 
boiling points. Therefore, even if pressure effects 
on viscosity and thermal conductivity are signifi- 
cant, the above assumption remains applicable to 
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derive trends in the variations of v when chang- 
ing AT and/or T, at atmospheric pressure, which 
is done below. 

A typical velocity profile is shown in Fig. 2 
together with the corresponding third-degree 
polynomial profile and the ideal parabolic pro- 
file. Obviously, as follows from the definition of 
v, the exact and third-degree profiles become 
identical as one approaches the cold wall (X/W = 
0). They are close to each other but differ 
significantly from the parabolic profile. The 
position of the maximum velocity appears to be 
shifted from the channel centre (.X/W = 0.5) to- 
wards the hot wall. It can be shown that, for the 
third-degree polynomial velocity profile, this 
position is given by 

1+ 3v - V1+ 3v2 
(X~WL,, = (jv (19) 

The maximum relative velocity, which is equal to 

u max 
- = - -$ [l - 9v2 - (1+ 3v*)Yi-Z7] 
(u> 

(20) 
is slightly larger than for the parabolic profile. 
For instance, for v = -0.2, one obtains (xl 

W) lll.?X = 0.549 and u,,,/(u) = 1.515. 
The relative deviations of the exact and corre- 

sponding third-degree polynomial velocity pro- 

files from the parabolic profile are more easily 
observed in the plots of E,, and cg, respectively, 
vs. x/w as seen in Fig. 3. In this kind of E vs. x/w 
plot, the parabolic profile is simply represented 
as the straight horizontal line E = 0 for all x/w. It 
is easily seen from Eq. 12 that the relative 
deviation, c3, for a third-degree velocity profile 
is a straight line with a slope equal to -2v and 
passing through the point [c3 = 0, x/w = l/2]: 

E)=v(l-2.;) (21) 

The exact relative velocity profile has, in the E 
vs. x/w representation, a more complex shape as 
seen in Fig. 3. As mentioned in the theoretical 
section, the v parameter is given as the value of 
the limiting value of E,, when one approaches 
x/w = 0. As the viscosity decreases with increas- 
ing temperature, the velocity in the vicinity of 
the cold wall is lower than it would be if the 
profile was parabolic. Therefore, the v parame- 
ters in thermal FFF are negative as long as the 
cold wall is the accumulation wall. In the case of 
ethylbenzene with AT = 100°C and T, = 20°C 
corresponding to the curves in Fig. 3, one has 
v = -0.2922. This value is large and shows that 
the temperature effect on the velocity profile 
must be taken into account when interpreting 
retention data in thermal FFF. Indeed, neglect- 
ing this effect by using the classical retention 

Fig. 2. Relative velocity profiles plotted as x/w vs. u/(u). 1 = parabolic profile; 2 = exact profile; 3 = third-degree polynomial 
profile. Solvent, ethylbenzene; AT = 100°C; T, = 20°C. 
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E 

Fig. 3. Relative deviation, E, of the exact relative velocity profile from the parabolic profile vs. x/w (solid curve). The straight line 

(dotted line) represents the relative deviation of the corresponding third-degree polynomial velocity profile from the parabolic 
profile. The v parameter is given as the intercept of this straight line (in this case v = -0.29218). Solvent. ethylbenzene; 

AT = 100°C; T, = 20°C. 

equation for a parabolic profile will, in the high 
retention domain, result in a nearly 29% error in 
the basic FFF parameter A, which, in turn, will 
correspond to a 87% error in the determination 
of the molecular mass of a polystyrene sample 
from a known relationship between A and molec- 

ular mass. 
The deviation of the velocity profile from the 

parabolic shape arises from the temperature 
dependence of the carrier liquid viscosity. How- 
ever, the influence of this effect depends on the 
temperature profile. The influence of the vari- 
ation of the thermal conductivity with tempera- 
ture has only a minor effect on the resulting 
velocity profile. Indeed, it can be shown that, for 
ethylbenzene with T, = 20°C in the relatively 
extreme case where AT = 100°C the exact rela- 
tive velocity profile and the relative velocity 
profile that would be obtained if the thermal 
conductivity was independent of the temperature 
are very close to each other. Their maximum 
values differ by less than 0.2%. The corre- 
sponding v parameters are equal to -0.2922 and 
-0.2999, respectively. 

The dependence of v with AT is plotted for 
ethylbenzene in Fig. 4a at various T, values; V, 
which reflects the distortion of the flow profile 

from the parabolic shape, is seen to increase in 
absolute value with increasing AT. For a given 
AT, 1~1 increases with decreasing T,. A three- 
dimensional representation of v vs. AT and T, is 
shown for ethylbenzene in Fig. 4b. Similar 
curves are obtained for other organic solvents 
listed in Table 1. 

In order to allow an easy determination the I, 
parameter corresponding to the solvent and 
temperature conditions of a given thermal FFF 
experiment without performing the lengthy 

calculations involved in the procedure described 
above, the set of 40 v values obtained for a given 
solvent served as a database for finding a correla- 
tion for v as a function of AT and T,. Because 
the variation of v with T, at a given AT is nearly 
linear and that with AT at a given T, is nearly 
quadratic, the following regression was tested by 
means of the least-mean square method: 

v = (a,T, + n,) AT + (a,T, + a,) AT’ 

+ (us T, + a,) AT’ (22) 

The fit is satisfactory for the twelve solvents. The 
relative error in v arising from the regression was 
determined by comparing values given by Eq. 22 
with the original v values. It is found to be lower 
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0 20 40 60 60 100 

AT 

Fig. 4. Variations of the v parameter with AT and T,. (a) v 
vs. AT at T, = 10, 20, 30 and 40°C from bottom to top curve; 
(b) three-dimensional representation of Y vs. AT and T,. 

Solvent, ethylbenzene. 

than 0.4% in all instances and, on average, is 
about 0.2%, which is satisfactory. Indeed, in the 
high-retention domain, a 1% error in the de- 
termination of v with v = -0.2 results in only a 
0.25% error in the FFF parameter A determined 
from retention data. Accordingly, the error in A 
resulting from the use of Eq. 22 instead of the 
exact v value will be at most about 0.1%) which 
is negligible in comparison with the experimental 
uncertainty in the measurement of the retention 
factor R. This error in A will be smaller for 
smaller 1~1 values. The numerical values of the a, 
coefficients determined for the twelve solvents 
investigated are reported in Table 2 with AT and 
T, expressed in “C (note that if T, and AT were 

expressed in K instead of “C, the numerical 
values of a2, a4 and a6 would be changed, but 
the value of v would be unaffected). 

It is instructive to evaluate the susceptibility of 
v to small variations in the experimental con- 
ditions. In the case of ethylbenzene with AT = 
60°C and T, = 20°C one finds dln jvl/dln AT= 
0.79 and dln Ivlldln T,= -1.72 (with T, ex- 
pressed in K). Accordingly, 1°C variations in AT 
and T, induce 1.3% and 0.6% variations in V, 
respectively. These variations, which are larger 
than typical temperature fluctuations observed 
experimentally, will therefore have a negligible 
influence on the determination of A in thermal 
FFF, as far as the velocity profile is concerned 
(of course, these variations, especially the vari- 
ation of AT, will directly influence the concen- 
tration profile and, hence, the retention factor, 
but this effect is not considered in the present 
study). 

The correctness of the ui coefficients reported 
in Table 2 lies on the accuracy of the experimen- 
tal physico-chemical parameters of the solvent 
which influence the velocity profile. The most 
important one is the parameter B entering the 
viscosity Eq. 4. In the case of ethylbenzene with 
AT= 60°C and T, = 20°C one finds dln Iv(l 
d In B = 0.91. Therefore, a 1% variation of B 
(i.e. 6B = 11 K for ethylbenzene) leads to a 
0.9% variation in V. In practice, the B parameter 
obtained by fitting experimental viscosity data 
according to Eq. 4 may not be rigorously equal 
to the true B parameter of the solvent investi- 
gated owing to the experimental uncertainty in 
the basic viscosity data, or Eq. 4 may not fit 
correctly the viscosity data in the whole tempera- 
ture domain, in spite of its theoretical founda- 
tion. This source of error is probably the most 
important although its significance cannot easily 
be estimated. Nevertheless, the relatively high 
value of the correlation coefficient (generally 
larger than 0.999) obtained when fitting ex- 
perimental data according to Eq. 4 gives confi- 
dence in the accuracy of the B parameter and of 
the resulting ai coefficients in Eq. 22. 

The influence of B on v is shown in Fig. 5 for 
T, = 20°C and two AT values (50 and 100°C). In 
the B range spanned by the twelve investigated 
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Table 2 

Values of the a, parameters entering the v vs. AT and 7’, relationship, v = (a,T, + a,) AT + (a,T, + a,) AT’ + (a,T, + a,) AT’, 

with AT and Tc in “C 

Solvent a, 02 a, 0, as ah 

Benzene 3.2890. lo-’ -5.7476 10 m3 -2.3355.10 ’ 2.7828. IO- ’ 7.9610. 10 I” -7.7659. 10 I’ 

2-Butanone 2.4391. 10 ’ -4.2698. 10mi -1.4870.10~’ 1.8096. lO_ 4.5769 10 ‘(’ -4.6985 lo-” 

Carbon tetrachloride 3.1100’ lo-’ -5.4295.10-’ -2.1386.10 ’ 2.5182. 10 5 7.0947 I 10 “I --6.9182 10 -* 

Cyclohexane 3.7850. 1O-5 -6.6216. 10m7 -2.8678’10~~’ 3.3675.10 ’ 9.9830 10 -I(’ -9.7197. lomR 

Cyclohexanone 4.4449. lo-’ -7.8087. lo-’ -3.6313 10 -’ 4.3010-10 i 1.2Y79. 10 ” -1.2948. 10 ’ 

p-Dioxane 3.2829. lo-’ -5.7365.10 ’ -2.3105. 10 -’ 2.7502. 10 ’ 7.6947 10~~“’ -7.7352.10 R 

Ethyl acetate 2.6196.10 -’ -4.5583 lo-’ -1.6611 10~’ 1.9285. 10 ’ 5.2939. lo- “I -5.0727. 10 -* 
Ethylbenzene 2.7579. lo-’ -4.7923. lo-’ -1.8286. lo-’ 2.1212, 10 i 6.1322. IO- I” -5.6833. 1K8 

Tetrahydrofuran 2.3140. lo-’ -4.0363.10m1 -1.3965.10 ’ 1.6848. 10 ’ 4.3405 10 “I -4.2795’10 ’ 

Toluene 2.7169. lo-’ -4.7429’10 m3 - 1.7549. 10 -’ 2.0883.10~ 5.6398. 10 I” - 5.5386.10~” 

o-xylene 3.1016. lo-’ -5.2335’10 3 -2.0980’ lo-’ 2.3803. 10~ i 6.9511 10~” -6.4920. 10 -’ 

p-xylene 2.6337’10. ’ -4.5996. lo-’ -1.6614.10 ’ 1.9918. lomS 5.1909~ 10 I” -5.2239’ 10~’ 

solvents (from about 900 to 1800 K), v is seen to 
vary approximately linearly, although their inter- 
cepts are not equal to 0 as they should be since a 
hypothetical B = 0 solvent would have a constant 
viscosity at all temperatures. Nevertheless, as 
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Fig. 5. Variations of the v parameter with the solvent B 
constant. Upper curve. AT= 50°C; lower curve, AT = 100°C. 

T, = 20°C. 

organic solvents have B values lying within the 
range covered in Fig. 5, this near-linearity prop- 
erty can be used to obtain a rough estimate of 
the v value for a solvent not listed in Table 1 but 
for which B is known. However, one cannot 
expect to obtain precise estimates as the tem- 
perature dependence of the thermal conductivity 
differs from one solvent to another. as reflected 
by the slight fluctuations of the data points in 
Fig. 5 around the regression line. 

The major interest in the calculation of v 
according to Eq. 22 in connection with the data 
in Table 2 is that it allows one to take into 
account, with fair accuracy, the effect that devia- 
tions in the velocity profile have on calculations 
of the retention factor. Indeed, the calculation of 
the retention factor, R, of a polystyrene sample 
with molecular mass 300 000 using the exact 
velocity profile of the ethylbenzene carrier with 
AT = 60°C and T, = 20°C gives a value of 0.195. 
If the velocity profile was assumed to be 
parabolic, the error in R would be 19.5%, 
whereas using the third-degree polynomial ve- 
locity profile with the v value estimated as 
indicated above as -0.200, the error in R is only 
0.25%. The error in R appears in this instance to 
be reduced nearly by two orders of magnitude 
when taking into account the deviation of the 



J. E. Belgaied et al. 1 J. Chromatogr. A 678 (1994) 8.5-96 95 

velocity profile from the parabolic shape by 
means of the third-degree profile. 
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5. Conclusions 

Thermal FFF is mainly used to obtain in- 
formation on the thermal diffusion properties 
and the molecular mass or size of a sample. The 
first step in this direction is to determine the 
basic FFF parameter A from retention data. In 
order to take into account the deviation of the 
velocity profile from the ideal parabolic shape 
due to the temperature dependence of the vis- 
cosity, one suggests first calculating the v param- 
eter of the third-degree polynomial velocity 
profile to approximate the exact velocity profile 
by means of Eq. 22 and Table 2, for the actual 
operating conditions (solvent, AT, T,). Then the 
basic FFF parameter A can be obtained from the 
retention factor R using Eq. 17 for that calcu- 
lated value of K Solving Eq. 17 for A when R and 
v are known can be done numerically using a 
classical iterative methods such as Newton’s 
method or, most conveniently, by listing R 
values for as close as desired A values with 
various spreadsheet applications, such as Excel, 
on microcomputers. 

This study was motivated by the need for a 
practical method to take into account retention 
perturbations in thermal FFF arising from devia- 
tions of the velocity profile from the ideal 
parabolic shape due to the temperature depen- 
dence of the relevant parameters. It has been 
pointed out that, similarly, retention perturba- 
tions may also arise from deviations of the 
concentration profile from the ideal exponential 
shape [S]. Although the latter perturbations 
might be of the same order as the former and 
that the assumption of an exponential concen- 
tration profile made for obtaining Eq. 17 is not 
rigorously correct, Eq. 17 still serves as a very 
useful basis for taking into account the effect of 
the concentration profile distortion on retention. 
Work is in progress in this direction and will be 
presented in a forthcoming publication [16]. 
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